

Question Paper Code : 52093

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

Second Semester

Civil Engineering

PH 2161/PH 23/080040002 - ENGINEERING PHYSICS - II

(Common to all branches)

(Regulations 2008)

Time : Three Hours Maximum : 100 Marks

Answer ALL questions. $PART - A (10 \times 2 = 20 Marks)$

- Write down the expression for Fermi-Distribution function. 1.
- Give the expression for the carrier concentration in metals. 2
- Compared with Gemanium, Silicon is widely used to manufacture the elemental 3. device. Why ?
- Draw the graph for variation of Fermi level with temperature in p-type semiconductor. 4.
- What is the origin of magnetic moment? 5
- What are cryotron switches? 6.
- Calculate the polarization produced in a dielectric medium of dielectric constant 6 7. when it is subjected to an electric field of 100 V/m. (Given $\varepsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$)

1

- Define dielectric breakdown and dielectric strength. 8.
- What is shape memory effect ? 9.
- What are the different crystalline forms of carbon ? 10.

52093

$PART - B (5 \times 16 = 80 marks)$

11.

(a) (i) State the postulates of classical free electron theory and derive an expression for thermal conductivity of metals. (12)

(ii) A copper wire whose radius is 0.08 cm carries a steady current of 10 A. Calculate the current density of the wire and drift velocity of the free electron. (n = 8.46×10^{28} /m³). (4)

OR

- (b) (i) Derive an expression for the number of allowed states per unit volume of a solid.
 (8)
 - (ii) Prove that the average energy of a free electron in metal is $3 E_{FO}/5$. (8)
- 12. (a) (i) Assuming the Fermi-Dirac distribution, derive an expression for the concentration of electrons per unit volume in the conduction band of an intrinsic semiconductor. (12)
 - (ii) Find the intrinsic carrier concentration and Position of Fermi energy level I in Silicon with respect to the VB edge. Given $m_h = 0.92 m_0$; $m_e^* = 0.49 m_0$.

 $N_{\rm C} = 2.21 \times 10^{25}$ /m³ and $N_{\rm V} = 8.60 \times 10^{24}$ /m³ and T = 300 K.

OR

- (b) (i) With neat sketches, explain how Fermi level varies with impurity concentration and temperature in both p-type and n-type semiconductors.
 - (ii) What is Hall effect ? Describe an experimental arrangement to measure the Hall co-efficient.
- 13. (a) Explain domain theory of ferromagnetism.

OR

(b) Mention the difference between soft and hard superconductors. Describe principle and working of SQUID and Cryotron.

2

(4)

(8)

(8)

14.	(a)	Exp	lain about :		
		(i)	Electronic Polarisation, Ionic Polarisation.	(8)	
		(ii)	Dielectric breakdown	(8)	
			OR		
	(b)	Derive an expression for the internal field in a dielectric and hence obtain the			
		Clausius-Mosatti equation.		(16)	
15.	(a)	(i)	What are metallic glasses ? Explain how they are prepared 1	by rapid	
			quenching method.	(2 + 6)	
		(ii)	List out the applications of metallic glasses.	(4)	
		(iii)	Explain what are the uses of shape memory alloys.	(4)	
			OR .		
	(b)	(i)	What is fullerene?	(2)	
		(ii)	What are the applications of Carbon nAnotubes ?	(4)	
		(iii)	Explain with necessary diagrams, the synthesis of nanomaterials using the	ising the	
			following methods :		
			(1) Chemical Vapour deposition	(5)	
			(2) Sol-gel method.	(5)	

3

f

52093

5

*

ļ